论文标题

基于交替方向Riemannian最佳算法的歧义函数塑形

Ambiguity Function Shaping based on Alternating Direction Riemannian Optimal Algorithm

论文作者

Yi, Haoyu, Zhang, Xinyu, Jiang, Weidong, Huo, Kai

论文摘要

为了提高认知雷达(CR)适应环境的能力,可以通过设计波形来综合所需的歧义函数(AF)。这个问题的关键是如何最大程度地减少干扰能力。抑制干扰功率等效于最大程度地减少范围多普勒垃圾箱的慢速歧义函数(Staf)的期望。从技术的角度来看,这实际上是具有恒定模量约束(CMC)的非凸四重函数的优化问题。在本文中,我们提出了一种新的方法来设计波形,以基于抑制干扰能力合成STAF。我们在交替的方向惩罚方法(ADPM)框架内提出了一种迭代算法。在每次迭代中,通过引入辅助变量,此问题分为两个子问题。在第一个子问题中,我们用封闭形式的解决方案直接解决了凸问题,然后在第二个子问题中利用了Riemannian Trust区(RTR)算法。仿真结果表明,所提出的算法在Staf,范围切割和信噪比(SIR)值的方面优于其他高级算法。

In order to improve the ability of cognitive radar (CR) to adapt to the environment, the required ambiguity function (AF) can be synthesized by designing the waveform. The key to this problem is how to minimize the interference power. Suppressing the interference power is equivalent to minimize the expectation of slow-time ambiguity function (STAF) over range-Doppler bins. From a technical point of view, this is actually an optimization problem of a non-convex quartic function with constant modulus constraints (CMC). In this paper, we proposed a novel method to design a waveform to synthesize the STAF based on suppressing the interference power. We put forward an iterative algorithm within an alternating direction penalty method (ADPM) framework. In each iteration, this problem is split into two sub-problems by introducing auxiliary variables. In the first sub-problem, we solved the convex problem directly with a closed-form solution, then utilized the Riemannian trust region (RTR) algorithm in the second sub-problem. Simulation results demonstrate that the proposed algorithm outperforms other advanced algorithms in the aspects of STAF, range-cut and signal-to-interference-ratio (SIR) value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源