论文标题

一种新型的半监督元学习方法,用于转移脑计算机界面

A Novel Semi-supervised Meta Learning Method for Subject-transfer Brain-computer Interface

论文作者

Li, Jingcong, Wang, Fei, Huang, Haiyun, Qi, Feifei, Pan, Jiahui

论文摘要

大脑计算机界面(BCI)提供了人脑和外部设备之间的直接通信途径。在新受试者可以使用BCI之前,通常需要进行校准程序。因为间和受试者内部的差异是如此之大,以至于由现有受试者训练的模型在新受试者上的表现不佳。因此,有效的主题转移和校准方法至关重要。在本文中,我们提出了一种半监督的元学习(SSML)方法,用于BCIS的主题转移学习。拟议的SSML首先学习了具有现有主题的元模型,然后以半监督的学习方式对模型进行微调,即使用很少的标记和许多未标记的目标对象样本进行校准。对于标记数据稀缺或昂贵而未标记数据的BCI应用程序非常重要。为了验证SSML方法,测试了三种不同的BCI范例:1)与事件相关的潜在检测; 2)情绪识别; 3)睡眠分期。 SSML在前两个范式上取得了显着提高15%,而第三个范式的提高了4.9%。实验结果证明了SSML方法在BCI应用中的有效性和潜力。

Brain-computer interface (BCI) provides a direct communication pathway between human brain and external devices. Before a new subject could use BCI, a calibration procedure is usually required. Because the inter- and intra-subject variances are so large that the models trained by the existing subjects perform poorly on new subjects. Therefore, effective subject-transfer and calibration method is essential. In this paper, we propose a semi-supervised meta learning (SSML) method for subject-transfer learning in BCIs. The proposed SSML learns a meta model with the existing subjects first, then fine-tunes the model in a semi-supervised learning manner, i.e. using few labeled and many unlabeled samples of target subject for calibration. It is significant for BCI applications where the labeled data are scarce or expensive while unlabeled data are readily available. To verify the SSML method, three different BCI paradigms are tested: 1) event-related potential detection; 2) emotion recognition; and 3) sleep staging. The SSML achieved significant improvements of over 15% on the first two paradigms and 4.9% on the third. The experimental results demonstrated the effectiveness and potential of the SSML method in BCI applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源