论文标题
非共同的仪表和重力理论和几何塞伯格·盖特地图
Noncommutative gauge and gravity theories and geometric Seiberg-Witten map
论文作者
论文摘要
我们给出了非交通量规和重力理论的教学解释,其中形式之间的外部产品通过Abelian Twist变形为$ \ Star $ - 产品(例如,Groenewold-Moyal Twist)。介绍了塞伯格(Seiberg)的统计和非交通仪理论之间的图。它允许表达以通常的交换性作用和交换场以及额外的相互作用项取决于非交通性参数的额外交互作用项的非交换性爱因斯坦重力的作用。
We give a pedagogical account of noncommutative gauge and gravity theories, where the exterior product between forms is deformed into a $\star$-product via an abelian twist (e.g. the Groenewold-Moyal twist). The Seiberg-Witten map between commutative and noncommutative gauge theories is introduced. It allows to express the action of noncommutative Einstein gravity coupled to spinor fields in terms of the usual commutative action with commutative fields plus extra interaction terms dependent on the noncommutativity parameter.