论文标题
具有离散索引的完整贝塞尔功能中的散射问题解决方案
Solutions of the scattering problem in a complete set of Bessel functions with a discrete index
论文作者
论文摘要
我们使用三角形表示方法来解决radialschrödinger方程,以解决克拉特策电位的连续散射状态。我们对具有逆方和反行立方体奇点的径向幂律电势也可以做到这一点。这些解决方案以离散索引为无限的贝塞尔功能。作为后一种溶液的物理应用,我们用电偶极子和电二极管矩从中性分子散射的电子散射。
We use the tridiagonal representation approach to solve the radial Schrödinger equation for the continuum scattering states of the Kratzer potential. We do the same for a radial power-law potential with inverse-square and inverse-cube singularities. These solutions are written as infinite convergent series of Bessel functions with a discrete index. As physical application of the latter solution, we treat electron scattering off a neutral molecule with electric dipole and electric quadrupole moments.