论文标题
Levenshtein OCR
Levenshtein OCR
论文作者
论文摘要
提出了基于视觉变压器(VLT)的新型场景文本识别器。受NLP领域的Levenshtein Transformer的启发,提出的方法(命名为Levenshtein OCR和Short Levocr)探索了一种自动从裁剪自然图像中自动转录文本内容的替代方法。具体而言,我们将场景文本识别的问题视为迭代序列完善过程。纯视觉模型产生的初始预测序列被编码并馈送到交叉模式变压器中,以与视觉特征相互作用并融合,从而逐渐近似地面真理。改进过程是通过两个基本字符级操作完成的:删除和插入,它们是通过模仿学习来学习的,并允许并行解码,动态长度变化和良好的解释性。定量实验清楚地表明,Levocr在标准基准上实现了最先进的性能,并且定性分析验证了所提出的Levocr算法的有效性和优势。代码可在https://github.com/alibabaresearch/advancedliteratemachinery/tree/main/main/ocr/levocr中找到。
A novel scene text recognizer based on Vision-Language Transformer (VLT) is presented. Inspired by Levenshtein Transformer in the area of NLP, the proposed method (named Levenshtein OCR, and LevOCR for short) explores an alternative way for automatically transcribing textual content from cropped natural images. Specifically, we cast the problem of scene text recognition as an iterative sequence refinement process. The initial prediction sequence produced by a pure vision model is encoded and fed into a cross-modal transformer to interact and fuse with the visual features, to progressively approximate the ground truth. The refinement process is accomplished via two basic character-level operations: deletion and insertion, which are learned with imitation learning and allow for parallel decoding, dynamic length change and good interpretability. The quantitative experiments clearly demonstrate that LevOCR achieves state-of-the-art performances on standard benchmarks and the qualitative analyses verify the effectiveness and advantage of the proposed LevOCR algorithm. Code is available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/LevOCR.