论文标题
机器人臂的安全有效的多对象抓地检测方法
A Secure and Efficient Multi-Object Grasping Detection Approach for Robotic Arms
论文作者
论文摘要
机器人臂广泛用于自动行业。但是,随着在机器人臂中深入学习的广泛应用,存在新的挑战,例如分配掌握计算能力和对安全需求不断增长的挑战。在这项工作中,我们提出了一种基于深度学习和边缘云协作的机器人手臂抓握方法。这种方法意识到了机器人部门的任意掌握计划,并考虑了掌握效率和信息安全性。此外,通过GAN训练的编码器和解码器可以在压缩时对图像进行加密,从而确保隐私的安全性。该模型在OCID数据集上达到92%的精度,图像压缩比达到0.03%,结构差值高于0.91。
Robotic arms are widely used in automatic industries. However, with wide applications of deep learning in robotic arms, there are new challenges such as the allocation of grasping computing power and the growing demand for security. In this work, we propose a robotic arm grasping approach based on deep learning and edge-cloud collaboration. This approach realizes the arbitrary grasp planning of the robot arm and considers the grasp efficiency and information security. In addition, the encoder and decoder trained by GAN enable the images to be encrypted while compressing, which ensures the security of privacy. The model achieves 92% accuracy on the OCID dataset, the image compression ratio reaches 0.03%, and the structural difference value is higher than 0.91.