论文标题

SL(2)的真实形式的统一的卡森 - 林不变

A unified Casson-Lin invariant for the real forms of SL(2)

论文作者

Dunfield, Nathan M., Rasmussen, Jacob

论文摘要

我们引入了一个统一的框架,以计数结组的表示形式为$ SU(2)$(2)和$ SL(2,\ Mathbb {r})$。对于三个球员中的结$ k $,林和其他人表明,带有固定子午单体的卡森风格的$ su(2)$表示,恢复了$ k $的签名功能。对于补充不包含封闭基本表面的结,我们表明$ sl(2,\ mathbb {r})$表示存在类似的计数。然后,我们证明$ sl(2,\ mathbb {r})$ count由$ su(2)$计数和单个整数$ h(k)$确定,允许我们仅使用基本的拓扑假设来显示各种$ sl(2,\ mathbb {r})$表示的存在。 结合了Culler-Dunfield的翻译扩展基因座,我们用它来证明通过循环支型盖和Dehn填充物获得的许多3个manifold组的左订单性。我们将进一步的应用程序应用于实际抛物线表示的存在,包括对莱利猜想的概括(由戈登证明)交替结。这些不变的人表现出值得解释的一些有趣的模式,我们包括许多开放的问题。 $ su(2)$和$ sl(2,\ mathbb {r})$之间的紧密连接来自将其表示形式视为适当的$ sl(2,\ m athbb {c})$ targinal vartial的真实点。尽管在相关情况下,这种真实的基因座通常在$ su(2)$和$ sl(2,\ mathbb {r})$的可简化字符上是高度奇异的,但我们展示了如何将这些真实的代数集解决成平滑的歧管。我们使用几何过渡$ s^2 \ to \ mathbb {e}^2 \ to \ mathbb {h}^2 $从投影几何形状的角度进行研究,它们允许我们通过casson-lin计数$ su(2)$ su(2)$ sl(2)$ sl(2),\ m mathbbbbbbbbbbbbbbbbbbbbb cartecant,我们使用几何过渡$ s^2 \ to \ mathbb {e}^2 \ to \ mathbb {e}^2 \ to \ mathbb {e}^2 \ to \ mathBb {

We introduce a unified framework for counting representations of knot groups into $SU(2)$ and $SL(2, \mathbb{R})$. For a knot $K$ in the 3-sphere, Lin and others showed that a Casson-style count of $SU(2)$ representations with fixed meridional holonomy recovers the signature function of $K$. For knots whose complement contains no closed essential surface, we show there is an analogous count for $SL(2, \mathbb{R})$ representations. We then prove the $SL(2, \mathbb{R})$ count is determined by the $SU(2)$ count and a single integer $h(K)$, allowing us to show the existence of various $SL(2, \mathbb{R})$ representations using only elementary topological hypotheses. Combined with the translation extension locus of Culler-Dunfield, we use this to prove left-orderability of many 3-manifold groups obtained by cyclic branched covers and Dehn fillings on broad classes of knots. We give further applications to the existence of real parabolic representations, including a generalization of the Riley Conjecture (proved by Gordon) to alternating knots. These invariants exhibit some intriguing patterns that deserve explanation, and we include many open questions. The close connection between $SU(2)$ and $SL(2, \mathbb{R})$ comes from viewing their representations as the real points of the appropriate $SL(2, \mathbb{C})$ character variety. While such real loci are typically highly singular at the reducible characters that are common to both $SU(2)$ and $SL(2, \mathbb{R})$, in the relevant situations, we show how to resolve these real algebraic sets into smooth manifolds. We construct these resolutions using the geometric transition $S^2 \to \mathbb{E}^2 \to \mathbb{H}^2$, studied from the perspective of projective geometry, and they allow us to pass between Casson-Lin counts of $SU(2)$ and $SL(2, \mathbb{R})$ representations unimpeded.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源