论文标题

曲率诱导的伪径磁场来自石墨烯中时间依赖的几何形状

Curvature-induced pseudogauge fields from time-dependent geometries in graphene

论文作者

Morales, Pablo A., Copinger, Patrick

论文摘要

在时间依赖性几何形状中,在(2+1)维石墨烯片上的弯曲时空中研究了无质量的狄拉克方程。在绝热状态和高频周期性的几何形状中都发现了新兴的假期领域。前者将常规理解的均匀伪储物领域扩展到包括弱的暂时性不均匀性。后者通过Floquet理论的使用代表了一类新的新兴伪储物领域,并被认为有可能提供宇宙学高频几何形状的凝结问题。

The massless Dirac equation is studied in curved spacetime on the (2+1)-dimensional graphene sheet in time-dependent geometries. Emergent pseudogauge fields are found both in the adiabatic regime and, for high-frequency periodic geometries, in the nonadiabatic regime for a generic Friedmann-Lemaître-Robertson-Walker metric in Fermi normal coordinates. The former extends the conventionally understood homogeneous pseudogauge field to include weak temporal inhomogeneities. The latter, through the usage of Floquet theory, represents a new class of emergent pseudogauge field and is argued to potentially provide a condensed matter realization of cosmological high-frequency geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源