论文标题
范德华的超高分解电流密度一维$ \ mathrm {pdbr_2} $
Ultrahigh breakdown current density of van der Waals One Dimensional $\mathrm{PdBr_2}$
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
One-dimensional (1D) van der Waals (vdW) materials offer nearly defect-free strands as channel material in the field-effect transistor (FET) devices and probably, a better interconnect than conventional copper with higher current density and resistance to electro-migration with sustainable down-scaling. We report a new halide based "truly" 1D few-chain atomic thread, PdBr$_2$, isolable from its bulk which crystallizes in a monoclinic space group C2/c. Liquid phase exfoliated nanowires with mean length (20$\pm$1)$μ$m transferred onto SiO$_2$/Si wafer with a maximum aspect ratio of 5000 confirms the lower cleavage energy perpendicular to chain direction. Moreover, an isolated nanowire can also sustain current density of 200 MA/cm$^\mathrm{2}$ which is atleast one-order higher than typical copper interconnects. However, local transport measurement via conducting atomic force microscopy (CAFM) tip along the cross direction of the single chain records a much lower current density due to the anisotropic electronic band structure. While 1D nature of the nanoobject can be linked with non-trivial collective quantum behavior, vdW nature could be beneficial for the new pathways in interconnect fabrication strategy with better control of placement in an integrated circuit (IC).