论文标题
荧光寿命成像和FPGA实施的紧凑而健壮的深度学习体系结构
Compact and Robust Deep Learning Architecture for Fluorescence Lifetime Imaging and FPGA Implementation
论文作者
论文摘要
本文报道了一个定制的基于加法器的深度学习网络,用于时间域荧光寿命成像(FLIM)。通过利用L1-norm提取方法,我们提出了一个1-D荧光寿命Addernet(Flan),而无需基于乘法的卷积以降低计算复杂性。此外,我们使用对数尺度合并技术在时间维度中压缩荧光衰减,以丢弃以对数尺度flan(Flan+ls)的形式得出的冗余时间信息。与Flan和常规的1-D卷积神经网络(1-D CNN)相比,Flan+LS的压缩比达到0.11和0.23,同时在检索寿命中保持高精度。我们使用合成和真实数据对Flan和Flan+LS进行了广泛评估。将传统的拟合方法和其他非拟合方法与我们的网络进行了合成数据的比较。我们的网络在不同的光子计数方案中达到了较小的重建错误。对于实际数据,我们使用了共聚焦显微镜获得的荧光珠的数据来验证实际荧光团的有效性,我们的网络可以区分不同寿命的珠子。此外,我们在现场可编程的门阵列(FPGA)上实现了网络体系结构,并使用后定量技术来缩短位宽度,从而提高了计算效率。与1-D CNN和Flan相比,硬件上的Flan+LS达到了最高的计算效率。我们还讨论了我们的网络和硬件体系结构在其他时间分辨的生物医学应用程序中使用光子效率高的,时间分辨的传感器的适用性。
This paper reported a bespoke adder-based deep learning network for time-domain fluorescence lifetime imaging (FLIM). By leveraging the l1-norm extraction method, we propose a 1-D Fluorescence Lifetime AdderNet (FLAN) without multiplication-based convolutions to reduce the computational complexity. Further, we compressed fluorescence decays in temporal dimension using a log-scale merging technique to discard redundant temporal information derived as log-scaling FLAN (FLAN+LS). FLAN+LS achieves 0.11 and 0.23 compression ratios compared with FLAN and a conventional 1-D convolutional neural network (1-D CNN) while maintaining high accuracy in retrieving lifetimes. We extensively evaluated FLAN and FLAN+LS using synthetic and real data. A traditional fitting method and other non-fitting, high-accuracy algorithms were compared with our networks for synthetic data. Our networks attained a minor reconstruction error in different photon-count scenarios. For real data, we used fluorescent beads' data acquired by a confocal microscope to validate the effectiveness of real fluorophores, and our networks can differentiate beads with different lifetimes. Additionally, we implemented the network architecture on a field-programmable gate array (FPGA) with a post-quantization technique to shorten the bit-width, thereby improving computing efficiency. FLAN+LS on hardware achieves the highest computing efficiency compared to 1-D CNN and FLAN. We also discussed the applicability of our network and hardware architecture for other time-resolved biomedical applications using photon-efficient, time-resolved sensors.