论文标题

3D纹理形状的恢复,并具有学识渊博的先验

3D Textured Shape Recovery with Learned Geometric Priors

论文作者

Li, Lei, Liu, Zhizheng, Ren, Weining, Yang, Liudi, Wang, Fangjinhua, Pollefeys, Marc, Peng, Songyou

论文摘要

从部分扫描中进行的3D纹理形状恢复对于许多现实世界应用至关重要。现有的方法证明了隐式功能表示的功效,但它们患有严重阻塞和不同物体类型的部分投入,这极大地阻碍了其在现实世界中的应用价值。该技术报告介绍了我们通过合并学习的几何先验来解决这些局限性的方法。为此,我们从学习的姿势预测中生成了SMPL模型,并将其融合到部分输入中,以增加对人体的先验知识。我们还提出了一种新颖的完整性感知边界框,以适应处理不同级别的尺度和部分扫描的部分性。

3D textured shape recovery from partial scans is crucial for many real-world applications. Existing approaches have demonstrated the efficacy of implicit function representation, but they suffer from partial inputs with severe occlusions and varying object types, which greatly hinders their application value in the real world. This technical report presents our approach to address these limitations by incorporating learned geometric priors. To this end, we generate a SMPL model from learned pose prediction and fuse it into the partial input to add prior knowledge of human bodies. We also propose a novel completeness-aware bounding box adaptation for handling different levels of scales and partialness of partial scans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源