论文标题
Finsler Monge-ampère方程的解决方案的解决方案的wulff形状对称性
Wulff shape symmetry of solutions to overdetermined problems for Finsler Monge-Ampère equations
论文作者
论文摘要
我们处理以一般各向异性规范为$ \ Mathbb r^n $的Monge-ampère类型方程式。分析了这些方程式凸解决方案的过度确定问题。相关的解决方案既有均匀的Dirichlet条件,又要在域的梯度图像上设计为$ H $的第二个边界条件。与解决方案的$ H $相关的WULFF形状对称性已建立。
We deal with Monge-Ampère type equations modeled upon general anisotropic norms $H$ in $\mathbb R^n$. An overdetermined problem for convex solutions to these equations is analyzed. The relevant solutions are subject to both a homogeneous Dirichlet condition and a second boundary condition, designed on $H$, on the gradient image of the domain. The Wulff shape symmetry associated with $H$ of the solutions is established.