论文标题
犯罪网络中的机器学习合作伙伴
Machine Learning Partners in Criminal Networks
论文作者
论文摘要
最近的研究表明,犯罪网络具有复杂的组织结构,但是是否可以用来预测犯罪网络的静态和动态特性。在这里,通过结合图表学习和机器学习方法,我们表明,可以使用政治腐败,警察情报和洗钱网络的结构性特性来恢复缺失的犯罪伙伴关系,区分不同类型的犯罪和法律协会,并预测犯罪分子之间交流的总数,都具有出色的准确性。我们还表明,我们的方法可以预期在腐败网络的动态增长过程中以很高的准确性来预测未来的犯罪协会。因此,类似于犯罪现场发现的证据,我们得出结论,犯罪网络的结构模式具有有关非法活动的重要信息,这使机器学习方法可以预测缺失的信息,甚至预测未来的犯罪行为。
Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among different types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with significant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior.