论文标题

BLDC电动机驱动系统的故障签名识别 - 统计信号融合方法

Fault Signature Identification for BLDC motor Drive System -A Statistical Signal Fusion Approach

论文作者

Banerjee, Tribeni Prasad, Roy, Susanta, Panigrahi, B. K.

论文摘要

提出了一种基于多胎信号处理和感觉数据融合的混合方法,以监视和识别飞行ECS(发动机控制系统)单元中使用的故障信号签名。尽管电动电流签名分析(MCSA)现在广泛用于故障检测,但拟议的混合方法符合诊断流程故障的最强大的在线/离线技术最强大的在线/离线技术之一。现有方法具有一些缺点,可以降低过程诊断系统的性能和准确性。特别是,由于阀门控制器的非线性行为,很难检测到随机随机噪声。只能使用短时间傅立叶变换(STFT),频率泄漏和与故障相关的当前组件的小幅度,但是无法观察到由于控制器行为而引起的故障。因此,在本文中提出了具有传感器融合算法的高级多胎信号和数据处理的框架,并获得了令人满意的结果。为了实现系统,使用了具有三相逆变器模块(TMS 320F2812)的基于DSP的BLDC电机控制器,并在实时数据上验证了所提出方法的性能。

A hybrid approach based on multirate signal processing and sensory data fusion is proposed for the condition monitoring and identification of fault signal signatures used in the Flight ECS (Engine Control System) unit. Though motor current signature analysis (MCSA) is widely used for fault detection now-a-days, the proposed hybrid method qualifies as one of the most powerful online/offline techniques for diagnosing the process faults. Existing approaches have some drawbacks that can degrade the performance and accuracy of a process-diagnosis system. In particular, it is very difficult to detect random stochastic noise due to the nonlinear behavior of valve controller. Using only Short Time Fourier Transform (STFT), frequency leakage and the small amplitude of the current components related to the fault can be observed, but the fault due to the controller behavior cannot be observed. Therefore, a framework of advanced multirate signal and data-processing aided with sensor fusion algorithms is proposed in this article and satisfactory results are obtained. For implementing the system, a DSP-based BLDC motor controller with three-phase inverter module (TMS 320F2812) is used and the performance of the proposed method is validated on real time data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源