论文标题

网络入侵检测使用有限的标记数据使用自私的数据

Network Intrusion Detection with Limited Labeled Data Using Self-supervision

论文作者

Lotfi, S., Modirrousta, M., Shashaani, S., Shoorehdeli, M. Aliyari

论文摘要

随着日常生活对计算机网络的不断依赖,这些网络安全的重要性变得突出。已经设计了对网络的不同入侵攻击,并且攻击者正在努力改善它们。因此,希望使用有限的标记数据检测入侵的能力是为网络提供更高级别的安全性。在本文中,我们设计了一个基于深神经网络的入侵检测系统。所提出的系统基于自我监督的对比学习,其中大量未标记的数据可用于生成适用于具有有限标记数据的各种下游任务的信息表示。使用不同的实验,我们已经表明,所提出的系统在UNSW-NB15数据集中的精度为94.05%,与基于自我监督学习的先前方法相比,提高了4.22%。当标记的训练数据的大小有限时,我们的模拟还显示出令人印象深刻的结果。在UNSW-NB15数据集上训练的结果编码器块的性能也已在其他数据集上进行了测试,以提取表示下游任务中竞争性结果。

With the increasing dependency of daily life over computer networks, the importance of these networks security becomes prominent. Different intrusion attacks to networks have been designed and the attackers are working on improving them. Thus the ability to detect intrusion with limited number of labeled data is desirable to provide networks with higher level of security. In this paper we design an intrusion detection system based on a deep neural network. The proposed system is based on self-supervised contrastive learning where a huge amount of unlabeled data can be used to generate informative representation suitable for various downstream tasks with limited number of labeled data. Using different experiments, we have shown that the proposed system presents an accuracy of 94.05% over the UNSW-NB15 dataset, an improvement of 4.22% in comparison to previous method based on self-supervised learning. Our simulations have also shown impressive results when the size of labeled training data is limited. The performance of the resulting Encoder Block trained on UNSW-NB15 dataset has also been tested on other datasets for representation extraction which shows competitive results in downstream tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源