论文标题
视频对象细分的像素级均衡匹配
Pixel-Level Equalized Matching for Video Object Segmentation
论文作者
论文摘要
特征相似性匹配将参考框架的信息传输到查询框架,是半监视视频对象分割中的关键组件。如果采用了汇总匹配,则背景干扰器很容易出现并降低性能。徒匹配机制试图通过限制要传输到查询框架的信息的量来防止这种情况,但是有两个限制:1)由于在测试时转换为射击匹配,因此无法完全利用过滤匹配的匹配; 2)搜索最佳超参数需要测试时间手动调整。为了在确保可靠的信息传输的同时克服这些局限性,我们引入了均衡的匹配机制。为了防止参考框架信息过于引用,通过简单地将SoftMax操作与查询一起应用SoftMax操作,对查询框架的潜在贡献得到均等。在公共基准数据集上,我们提出的方法与最先进的方法达到了可比的性能。
Feature similarity matching, which transfers the information of the reference frame to the query frame, is a key component in semi-supervised video object segmentation. If surjective matching is adopted, background distractors can easily occur and degrade the performance. Bijective matching mechanisms try to prevent this by restricting the amount of information being transferred to the query frame, but have two limitations: 1) surjective matching cannot be fully leveraged as it is transformed to bijective matching at test time; and 2) test-time manual tuning is required for searching the optimal hyper-parameters. To overcome these limitations while ensuring reliable information transfer, we introduce an equalized matching mechanism. To prevent the reference frame information from being overly referenced, the potential contribution to the query frame is equalized by simply applying a softmax operation along with the query. On public benchmark datasets, our proposed approach achieves a comparable performance to state-of-the-art methods.