论文标题
没有树木的图形的无标志性拉普拉斯光谱半径
The signless Laplacian spectral radius of graphs without trees
论文作者
论文摘要
令$ q(g)= d(g)+a(g)$是一个简单的订单$ n $图的无价laplacian矩阵,其中$ d(g)$和$ a(g)$分别是对角度矩阵的学位和$ g $的邻接矩阵。在本文中,我们为$ g $的无标志性光谱半径提供了一个尖锐的上限,而没有任何树木,并且表征了所有达到上限的极端图,这可能被视为著名的Erdős-Sós猜想的极端频谱。
Let $Q(G)=D(G)+A(G)$ be the signless Laplacian matrix of a simple graph of order $n$, where $D(G)$ and $A(G)$ are the degree diagonal matrix and the adjacency matrix of $G$, respectively. In this paper, we present a sharp upper bound for the signless spectral radius of $G$ without any tree and characterize all extremal graphs which attain the upper bound, which may be regarded as a spectral extremal version for the famous Erdős-Sós conjecture.