论文标题
通过量子测量结果学习分布
Learning Distributions over Quantum Measurement Outcomes
论文作者
论文摘要
量子状态的阴影层析成像提供了一种示例有效的方法,用于预测量子系统的性质,当时属性仅限于$ 2 $ outcome povms的期望值。但是,如果每个测量结果超过2个结果,则这些影子断层扫描程序会产生较差的界限。 In this paper, we consider a general problem of learning properties from unknown quantum states: given an unknown $d$-dimensional quantum state $ρ$ and $M$ unknown quantum measurements $\mathcal{M}_1,...,\mathcal{M}_M$ with $K\geq 2$ outcomes, estimating the probability distribution for applying $\mathcal{M}_i$在$ρ$上,在总变化距离内$ε$。与特殊情况相比,当$ k = 2 $时,我们需要学习未知分布而不是值。我们开发了一个在线影子断层扫描过程,该过程解决了这个问题,其高成功概率需要$ \ tilde {o}(k \ log^2m \ log d/ε^4)$ copies $ρ$。我们进一步证明了一个信息理论下限,至少$ω(\ min \ {d^2,k+\ log m \}/ε^2)$ copies of $ρ$需要以很高的成功概率解决此问题。我们的影子断层扫描过程需要对$ m $和$ d $的对数依赖性进行样本复杂性,并且对$ k $的依赖性最佳。
Shadow tomography for quantum states provides a sample efficient approach for predicting the properties of quantum systems when the properties are restricted to expectation values of $2$-outcome POVMs. However, these shadow tomography procedures yield poor bounds if there are more than 2 outcomes per measurement. In this paper, we consider a general problem of learning properties from unknown quantum states: given an unknown $d$-dimensional quantum state $ρ$ and $M$ unknown quantum measurements $\mathcal{M}_1,...,\mathcal{M}_M$ with $K\geq 2$ outcomes, estimating the probability distribution for applying $\mathcal{M}_i$ on $ρ$ to within total variation distance $ε$. Compared to the special case when $K=2$, we need to learn unknown distributions instead of values. We develop an online shadow tomography procedure that solves this problem with high success probability requiring $\tilde{O}(K\log^2M\log d/ε^4)$ copies of $ρ$. We further prove an information-theoretic lower bound that at least $Ω(\min\{d^2,K+\log M\}/ε^2)$ copies of $ρ$ are required to solve this problem with high success probability. Our shadow tomography procedure requires sample complexity with only logarithmic dependence on $M$ and $d$ and is sample-optimal for the dependence on $K$.