论文标题
知识增强的迭代教学生成和知识基础问题的推理回答
Knowledge-enhanced Iterative Instruction Generation and Reasoning for Knowledge Base Question Answering
论文作者
论文摘要
多跳跃知识基础问题答案(KBQA)旨在在知识库中找到答案实体,这是问题中提到的主题实体的几个啤酒花。现有基于检索的方法首先从问题中生成指令,然后使用它们来指导知识图上的多跳推理。由于指令是在整个推理过程中固定的,并且在指令生成中未考虑知识图,因此一旦错误地预测中间实体,该模型就无法修改其错误。为了解决这个问题,我们提出了Kbiger(知识库迭代指令生成和推理),这是一种新颖有效的方法,可以在推理图的帮助下动态生成指令。我们没有在推理之前生成所有指令,而是考虑(K-1)推理图来构建k-th指令。通过这种方式,模型可以检查图表的预测并生成新指令以修改中间实体的不正确预测。我们在两个多跳KBQA基准测试中进行实验,并胜过现有方法,并成为新州。进一步的实验表明,我们的方法确实检测到了中间实体的错误预测,并且具有修改此类错误的能力。
Multi-hop Knowledge Base Question Answering(KBQA) aims to find the answer entity in a knowledge base which is several hops from the topic entity mentioned in the question. Existing Retrieval-based approaches first generate instructions from the question and then use them to guide the multi-hop reasoning on the knowledge graph. As the instructions are fixed during the whole reasoning procedure and the knowledge graph is not considered in instruction generation, the model cannot revise its mistake once it predicts an intermediate entity incorrectly. To handle this, we propose KBIGER(Knowledge Base Iterative Instruction GEnerating and Reasoning), a novel and efficient approach to generate the instructions dynamically with the help of reasoning graph. Instead of generating all the instructions before reasoning, we take the (k-1)-th reasoning graph into consideration to build the k-th instruction. In this way, the model could check the prediction from the graph and generate new instructions to revise the incorrect prediction of intermediate entities. We do experiments on two multi-hop KBQA benchmarks and outperform the existing approaches, becoming the new-state-of-the-art. Further experiments show our method does detect the incorrect prediction of intermediate entities and has the ability to revise such errors.