论文标题

MMWave系统的多路径渠道估计中的体系结构 - 烯烃的权衡

Architecture-Algorithmic Trade-offs in Multi-path Channel Estimation for mmWAVE Systems

论文作者

Zhang, Lyutianyang, Roy, Sumit, Cao, Liu

论文摘要

5G mmwave巨大的MIMO系统可能会在密集的城市场景中部署,在密集的城市场景中,增加网络容量是主要目标。 MMWave收发器设计中的一个关键组成部分是通道估计,由于非常大的信号带宽(GHz的顺序),这是一个挑战,这意味着大尺度MIMO的大量分辨空间多径,以及大型TX/RX天线。这导致训练开销大大增加,这又导致了高度高的计算复杂性和功率成本。因此,我们的工作突出了收发器体系结构和接收器信号处理算法的相互作用,该算法从根本上解决(移动)手机功耗,并且性能的降低最小。我们通过在这种宽带场景中利用可用的稀疏性的混合波束形成MMWAVE接收器和通道估计算法来调查权衡取舍。用于稀疏通道估计的压缩感应(CS)框架 - 二进制迭代硬阈值(BIHT)\ cite {jacques2013Robust},然后是线性重建方法,具有变化的量化(ADC)水平 - 探索以比较给定的ADC预算之间的位点和采样率之间的权衡。 BIHT+线性重建方法的性能分析是通过对5G指定的多路径通道模型的仿真研究进行的,并将其与Oracle辅助的界限进行了比较。

5G mmWave massive MIMO systems are likely to be deployed in dense urban scenarios, where increasing network capacity is the primary objective. A key component in mmWave transceiver design is channel estimation which is challenging due to the very large signal bandwidths (order of GHz) implying significant resolved spatial multipath, coupled with large # of Tx/Rx antennas for large-scale MIMO. This results in significantly increased training overhead that in turn leads to unacceptably high computational complexity and power cost. Our work thus highlights the interplay of transceiver architecture and receiver signal processing algorithm choices that fundamentally address (mobile) handset power consumption, with minimal degradation in performance. We investigate trade-offs enabled by conjunction of hybrid beamforming mmWave receiver and channel estimation algorithms that exploit available sparsity in such wideband scenarios. A compressive sensing (CS) framework for sparse channel estimation -- Binary Iterative Hard Thresholding (BIHT) \cite{jacques2013robust} followed by linear reconstruction method with varying quantization (ADC) levels -- is explored to compare the trade-offs between bit-depth and sampling rate for a given ADC power budget. Performance analysis of the BIHT+ linear reconstruction method is conducted via simulation studies for 5G specified multi-path channel models and compared to oracle-assisted bounds for validation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源