论文标题
离散时间量子步行中固有的骨架结构
Skeleton structure inherent in discrete-time quantum walks
论文作者
论文摘要
在本文中,我们声称在带有同质硬币矩阵的一维晶格上,离散时间量子步行(QWS)背后存在一个共同的潜在结构(骨骼结构)。该骨架结构独立于初始状态,甚至部分与硬币矩阵有关。最好在量子 - 步行恢复随机步行(qwrws)的背景下进行解释,即复制量子步行的概率分布的随机步行,其中这种新发现的结构是过渡概率的简化公式。此外,我们构建了一个随机步行,其过渡概率是由骨架结构定义的,并证明步行者的所得属性与原始QWS和QWRW相似。
In this paper, we claim that a common underlying structure--a skeleton structure--is present behind discrete-time quantum walks (QWs) on a one-dimensional lattice with a homogeneous coin matrix. This skeleton structure is independent of the initial state, and partially, even of the coin matrix. This structure is best interpreted in the context of quantum-walk-replicating random walks (QWRWs), i.e., random walks that replicate the probability distribution of quantum walks, where this newly found structure acts as a simplified formula for the transition probability. Additionally, we construct a random walk whose transition probabilities are defined by the skeleton structure and demonstrate that the resultant properties of the walkers are similar to both the original QWs and QWRWs.