论文标题

KT-BT:通过多机器人系统中的行为树的知识转移框架

KT-BT: A Framework for Knowledge Transfer Through Behavior Trees in Multi-Robot Systems

论文作者

Venkata, Sanjay Sarma Oruganti, Parasuraman, Ramviyas, Pidaparti, Ramana

论文摘要

多机器人和多代理系统通过系统的局部行为进行系统的集成来展示集体(Swarm)智能。分享有关任务和环境知识的代理商可以提高个人和任务水平的绩效。但是,这很难实现,部分原因是缺乏在代理之间转移一部分已知知识(行为)的通用框架。本文提出了一个新的知识表示框架和一种称为KT-BT:通过行为树的知识转移的转移策略。 KT-BT框架通过在线行为树框架遵循查询反应加速机制,在该框架中,代理商对未知条件进行了广播查询,并使用条件性能控制子流量以适当的知识做出响应。我们嵌入了一种称为StringBT的新型语法结构,该结构编码知识,从而实现行为共享。从理论上讲,我们研究了KT-BT框架在整个组中获得高知识同质性的性质,而与异质系统相比,我们没有能力共享知识。我们在模拟的多机器人搜索和救援问题中广泛验证了我们的框架。结果表明,在各种情况下,知识转移的成功转移并提高了群体绩效。我们进一步研究了机会和沟通范围对一组代理商中群体绩效,知识传播和功能异质性的影响,并提供有趣的见解。

Multi-Robot and Multi-Agent Systems demonstrate collective (swarm) intelligence through systematic and distributed integration of local behaviors in a group. Agents sharing knowledge about the mission and environment can enhance performance at individual and mission levels. However, this is difficult to achieve, partly due to the lack of a generic framework for transferring part of the known knowledge (behaviors) between agents. This paper presents a new knowledge representation framework and a transfer strategy called KT-BT: Knowledge Transfer through Behavior Trees. The KT-BT framework follows a query-response-update mechanism through an online Behavior Tree framework, where agents broadcast queries for unknown conditions and respond with appropriate knowledge using a condition-action-control sub-flow. We embed a novel grammar structure called stringBT that encodes knowledge, enabling behavior sharing. We theoretically investigate the properties of the KT-BT framework in achieving homogeneity of high knowledge across the entire group compared to a heterogeneous system without the capability of sharing their knowledge. We extensively verify our framework in a simulated multi-robot search and rescue problem. The results show successful knowledge transfers and improved group performance in various scenarios. We further study the effects of opportunities and communication range on group performance, knowledge spread, and functional heterogeneity in a group of agents, presenting interesting insights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源