论文标题
通过确定性和随机时间依赖性模型对流行病的数据预测-19
Data Forecasts of the Epidemic COVID-19 by Deterministic and Stochastic Time-Dependent Models
论文作者
论文摘要
我们提出了一种确定性的SAIVRD模型和流行病Covid-19的随机SARV模型,该模型涉及无症状感染和疫苗接种,以使用时间依赖性参数进行数据预测。我们的确定性模型的预测进行了为期10天的预测,以查看该流行病在短期内是否会轻松或变得更加严重。我们随机模型的预测预测了最终大小和最大尺寸的概率分布,从长远来看,流行病的大小。使用来自美国数据集的第一个预测在5天内提供了3%的相对误差,在10天内预测了孤立的传染病病例的预测,而较小的病例则在恢复和死亡的预测中提供了相对误差。在第二个预测中使用时变参数的第二个预测中的分布在我们的模型中也是双峰,在我们对较小群体的模拟中,与时间无关的参数。对于具有时间相关模型的模型,不同之处在于,最终尺寸分布中还有另一个峰值,即小爆发的概率更高,最大尺寸分布随时间依赖性参数振荡。最终尺寸分布在不同的人群之间相似,最大尺寸分布也是如此,这意味着我们可以期望有相同的参数,并且在较大的人群中,最终大小和最大尺寸的比率相似(仅与第二个峰值的值不同)。结果表明,在美国最近的这种疾病的最新可传播性下,当初始感染被引入全易感(大)人群中时,发生了大约95%的人口,并且概率很高,因此流行病最大化至约30%的人群。
We propose a deterministic SAIVRD model and a stochastic SARV model of the epidemic COVID-19 involving asymptomatic infections and vaccinations to conduct data forecasts using time-dependent parameters. The forecast by our deterministic model conducts 10-day predictions to see whether the epidemic will ease or become more severe in the short term. The forecast by our stochastic model predicts the probability distributions of the final size and the maximum size to see how large the epidemic will be in the long run. The first forecast using the data set from the USA gives the relative errors within 3% in 5 days and 7% in 10 days for the prediction of isolated infectious cases and smaller ones for the predictions of recoveries and deaths. The distributions in the second forecast using the time-varying parameters from the first forecast are also bimodal in our model with time-independent parameters in our simulations of smaller populations. For the model with time-dependent model, what are different are that there is another peak in the final size distribution, that the the probability of minor outbreak is higher and that the maximum size distribution is oscillating with time-dependent parameters. The final size distributions are similar between different populations and so are the maximum size distributions, which means that we can expect that with the same parameters and in a large population, the ratio of the final size and the maximum size are distributed similarly (only different by the value of the second peak). The result shows that under recent transmissibility of this disease in the USA, when an initial infection is introduced into all-susceptible (large) population, major outbreak occurs with around 95% of the population and with high probability the epidemic is maximized to around 30% of the population.