论文标题

自我监督的多模式神经影像学得出了一系列阿尔茨海默氏症表型的预测性表示

Self-supervised multimodal neuroimaging yields predictive representations for a spectrum of Alzheimer's phenotypes

论文作者

Fedorov, Alex, Geenjaar, Eloy, Wu, Lei, Sylvain, Tristan, DeRamus, Thomas P., Luck, Margaux, Misiura, Maria, Hjelm, R Devon, Plis, Sergey M., Calhoun, Vince D.

论文摘要

近期关注通过现代机器学习方法预测脑部疾病的神经影像学研究通常包括单一模态并依靠监督的过度参数化模型。但是,单一模态仅提供了高度复杂的大脑的有限视图。至关重要的是,临床环境中的受监管模型缺乏准确的诊断标签用于培训。粗标签不会捕获长尾型脑疾病表型的频谱,这会导致模型的普遍性丧失,从而使它们在诊断环境中的有用程度降低。这项工作提出了一个新型的多尺度协调框架,用于从多模式神经影像数据中学习多个表示。我们提出了一般的归纳偏见的一般分类法,以捕获多模式自学融合中的独特和联合信息。分类学构成了一个无解码器模型的家族,具有降低的计算复杂性,并捕获多模式输入的本地和全局表示之间的多尺度关系。我们在阿尔茨海默氏病表型中使用功能和结构磁共振成像(MRI)数据对分类法进行了全面评估,并表明在预先培训期间,自学模型揭示了与疾病相关的大脑区域和多模态链接,而无需访问标签。提出的多模式自学学习的学习能够表现出两种模式的分类表现。伴随的丰富而灵活的无监督的深度学习框架捕获了复杂的多模式关系,并提供了符合或超过更狭窄的监督分类分析的预测性能。我们提供了详尽的定量证据,表明该框架如何显着推动我们对复杂脑部疾病中缺失的联系的搜索。

Recent neuroimaging studies that focus on predicting brain disorders via modern machine learning approaches commonly include a single modality and rely on supervised over-parameterized models.However, a single modality provides only a limited view of the highly complex brain. Critically, supervised models in clinical settings lack accurate diagnostic labels for training. Coarse labels do not capture the long-tailed spectrum of brain disorder phenotypes, which leads to a loss of generalizability of the model that makes them less useful in diagnostic settings. This work presents a novel multi-scale coordinated framework for learning multiple representations from multimodal neuroimaging data. We propose a general taxonomy of informative inductive biases to capture unique and joint information in multimodal self-supervised fusion. The taxonomy forms a family of decoder-free models with reduced computational complexity and a propensity to capture multi-scale relationships between local and global representations of the multimodal inputs. We conduct a comprehensive evaluation of the taxonomy using functional and structural magnetic resonance imaging (MRI) data across a spectrum of Alzheimer's disease phenotypes and show that self-supervised models reveal disorder-relevant brain regions and multimodal links without access to the labels during pre-training. The proposed multimodal self-supervised learning yields representations with improved classification performance for both modalities. The concomitant rich and flexible unsupervised deep learning framework captures complex multimodal relationships and provides predictive performance that meets or exceeds that of a more narrow supervised classification analysis. We present elaborate quantitative evidence of how this framework can significantly advance our search for missing links in complex brain disorders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源