论文标题
二阶,无条件稳定的磁性水力动力学方程的线性集合算法
Second order, unconditionally stable, linear ensemble algorithms for the magnetohydrodynamics equations
论文作者
论文摘要
我们提出了两种无条件稳定的线性集合算法,具有可预先计算的共享系数矩阵,用于磁性水力学方程。粘性术语通过标准扰动离散化处理。在广义正辅助变量方法(GPAV)的框架内,非线性项被完全显式地分散。引入动能的人工粘度稳定化,以提高GPAV集合方法的准确性。提出了数值结果以证明集成算法的准确性和鲁棒性。
We propose two unconditionally stable, linear ensemble algorithms with pre-computable shared coefficient matrices across different realizations for the magnetohydrodynamics equations. The viscous terms are treated by a standard perturbative discretization. The nonlinear terms are discretized fully explicitly within the framework of the generalized positive auxiliary variable approach (GPAV). Artificial viscosity stabilization that modifies the kinetic energy is introduced to improve accuracy of the GPAV ensemble methods. Numerical results are presented to demonstrate the accuracy and robustness of the ensemble algorithms.