论文标题

不稳定的Stokes方程的四阶嵌入式边界有限体积方法具有复杂的几何形状

A Fourth-Order Embedded Boundary Finite Volume Method for the Unsteady Stokes Equations with Complex Geometries

论文作者

Overton-Katz, Nathaniel, Gao, Xinfeng, Guzik, Stephen, Antepara, Oscar, Graves, Daniel T., Johansen, Hans

论文摘要

为不稳定的Stokes方程提供了四阶有限体积嵌入式边界(EB)方法。该算法使用EB在笛卡尔网格上代表复杂的几何形状,并采用一种技术来减轻“小切口”问题,而没有网格修改,细胞合并或状态重新分布。空间离散基于加权最小二乘技术,该技术已扩展到四阶操作员和边界条件,包括近似投影以强制执行无差异约束。使用四阶添加剂解释runge-kutta方法在及时进行解决方案,并分别具有隐式和显式处理的粘性和源术语。通过几项网格收敛研究证明了该方法的形式准确性,并显示了具有复杂的生物启发材料的应用结果。尽管复杂的几何形状产生了普遍的小细胞,但开发的方法达到了四阶准确性,并且仍然稳定。

A fourth-order finite volume embedded boundary (EB) method is presented for the unsteady Stokes equations. The algorithm represents complex geometries on a Cartesian grid using EB, employing a technique to mitigate the "small cut-cell" problem without mesh modifications, cell merging, or state redistribution. Spatial discretizations are based on a weighted least-squares technique that has been extended to fourth-order operators and boundary conditions, including an approximate projection to enforce the divergence-free constraint. Solutions are advanced in time using a fourth-order additive implicit-explicit Runge-Kutta method, with the viscous and source terms treated implicitly and explicitly, respectively. Formal accuracy of the method is demonstrated with several grid convergence studies, and results are shown for an application with a complex bio-inspired material. The developed method achieves fourth-order accuracy and is stable despite the pervasive small cells arising from complex geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源