论文标题
来自持续的同胞的球形坐标
Spherical Coordinates from Persistent Cohomology
论文作者
论文摘要
我们描述了一种通过使用持续的共同体学和变分优化来获得任意数据的球形参数化的方法。我们首先要计算数据集$ x $的过滤越野河流(VR)复合物的二级持久共同体,并从任何重要功能中提取Cocycle $α$。从这个Cocycle中,我们定义了一个关联的映射$α:VR(x)\ to s^2 $,并将此映射用作变异模型的不可行的初始化,我们显示出它具有独特的解决方案(直至刚性运动)。然后,我们采用交替的梯度下降/Möbius变换更新方法来解决该问题,并生成更合适的$α$同型类别的代表,即保持相关的拓扑特征。最后,我们对合成和现实世界数据集进行数值实验,以显示我们提出的方法的功效。
We describe a method to obtain spherical parameterizations of arbitrary data through the use of persistent cohomology and variational optimization. We begin by computing the second-degree persistent cohomology of the filtered Vietoris-Rips (VR) complex of a data set $X$ and extract a cocycle $α$ from any significant feature. From this cocycle, we define an associated map $α: VR(X) \to S^2$ and use this map as an infeasible initialization for a variational model, which we show has a unique solution (up to rigid motion). We then employ an alternating gradient descent/Möbius transformation update method to solve the problem and generate a more suitable, i.e., smoother, representative of the homotopy class of $α$, preserving the relevant topological feature. Finally, we conduct numerical experiments on both synthetic and real-world data sets to show the efficacy of our proposed approach.