论文标题

类星体光谱的生成模型

A Generative Model for Quasar Spectra

论文作者

Eilers, Anna-Christina, Hogg, David W., Schölkopf, Bernhard, Foreman-Mackey, Daniel, Davies, Frederick B., Schindler, Jan-Torge

论文摘要

我们基于高斯流程潜伏模型,为类星体光谱及其黑洞发动机的性质构建了多输出生成模型。该模型将每个类星体视为潜在特性的向量,以使类星体的光谱和所有物理特性与这些潜在参数的非线性函数相关联;高斯进程内核函数在功能空间上定义了先验。我们的生成模型经过合理的可能性函数训练,使我们能够正确处理异质的噪声和缺少数据,这对于所有天体物理应用至关重要。它可以同时预测未观察到的光谱区域,以及在持有测试数据中类星体的物理特性。我们将模型应用于休息框的紫外线和光学类星体光谱,可为精确的黑洞质量(基于混响映射测量值)提供。与需要多个上述数据的混响映射研究不同,我们的模型即使光谱覆盖率有限,我们的模型也可以预测单个上两个光谱的黑洞质量。我们通过预测黑洞质量和未观察到的光谱区域来证明模型的能力。我们发现我们可以预测黑洞质量接近最佳准确性。

We build a multi-output generative model for quasar spectra and the properties of their black hole engines, based on a Gaussian process latent-variable model. This model treats every quasar as a vector of latent properties such that the spectrum and all physical properties of the quasar are associated with non-linear functions of those latent parameters; the Gaussian process kernel functions define priors on the function space. Our generative model is trained with a justifiable likelihood function that allows us to treat heteroscedastic noise and missing data correctly, which is crucial for all astrophysical applications. It can predict simultaneously unobserved spectral regions, as well as the physical properties of quasars in held-out test data. We apply the model to rest-frame ultraviolet and optical quasar spectra for which precise black hole masses (based on reverberation mapping measurements) are available. Unlike reverberation-mapping studies, which require multi-epoch data, our model predicts black hole masses from single-epoch spectra, even with limited spectral coverage. We demonstrate the capabilities of the model by predicting black hole masses and unobserved spectral regions. We find that we predict black hole masses at close to the best possible accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源