论文标题
具有共同边界的双心脑解剖结构的统计形状建模
Statistical Shape Modeling of Biventricular Anatomy with Shared Boundaries
论文作者
论文摘要
统计形状建模(SSM)是一种有价值而强大的工具,可以生成复杂解剖结构的详细表示,该解剖结构可以实现定量分析和形状及其变化的比较。 SSM应用数学,统计数据和计算将形状解析为定量表示(例如对应点或地标),这些表示将有助于回答有关人群中解剖学变化的各种问题。复杂的解剖结构具有许多不同的部分,具有不同的相互作用或复杂的结构。例如,心脏是四腔解剖结构,腔室之间有几个共同的边界。为了在整个身体中充分灌注末端器官,需要对心脏腔的协调和有效的收缩。这些心脏共享边界内的微妙形状变化可以表明潜在的病理变化,导致不协调的收缩和末端器官灌注不良。早期检测和鲁棒量化可以洞悉理想的治疗技术和干预时机。但是,现有的SSM方法无法明确对共享边界的统计数据进行建模。本文提出了一种通用且灵活的数据驱动方法,用于构建具有共享边界的多器官解剖学的统计形状模型,可捕获单个解剖学的形态和对齐变化,及其在整个人群中共享边界表面。我们通过开发形状模型来证明使用双脑室心脏数据集的拟议方法的有效性,这些模型始终如一地参数化心脏双脑室结构和介入室内数据的介入(共享边界表面)。
Statistical shape modeling (SSM) is a valuable and powerful tool to generate a detailed representation of complex anatomy that enables quantitative analysis and the comparison of shapes and their variations. SSM applies mathematics, statistics, and computing to parse the shape into a quantitative representation (such as correspondence points or landmarks) that will help answer various questions about the anatomical variations across the population. Complex anatomical structures have many diverse parts with varying interactions or intricate architecture. For example, the heart is four-chambered anatomy with several shared boundaries between chambers. Coordinated and efficient contraction of the chambers of the heart is necessary to adequately perfuse end organs throughout the body. Subtle shape changes within these shared boundaries of the heart can indicate potential pathological changes that lead to uncoordinated contraction and poor end-organ perfusion. Early detection and robust quantification could provide insight into ideal treatment techniques and intervention timing. However, existing SSM approaches fall short of explicitly modeling the statistics of shared boundaries. This paper presents a general and flexible data-driven approach for building statistical shape models of multi-organ anatomies with shared boundaries that capture morphological and alignment changes of individual anatomies and their shared boundary surfaces throughout the population. We demonstrate the effectiveness of the proposed methods using a biventricular heart dataset by developing shape models that consistently parameterize the cardiac biventricular structure and the interventricular septum (shared boundary surface) across the population data.