论文标题
TOPOS多节点理论的一般表述
General Formulation of Topos Many-Node Theory
论文作者
论文摘要
我们在宇宙创建的第一时刻考虑创造的实体(事件)。假定所有事件(节点)之间存在因果关系的关系,使所有节点都放在世界线上,并且每个节点在时空中占据了一个区域(而不是一个点),以数学的方式称为语言环境。该语言环境节点的集合形成了TOPOS多节点系统。使用一些基本假设,我们介绍了两种哈密顿人。通过将一般的结构性哈密顿量归因于系统,可以证明该系统具有优化的临界维度,并具有可能的拉曼和红外光谱。此外,我们考虑了一般的非结构性哈密顿式,其中包括一组交通话之一的自我接合操作员以及由于旋转,电荷或其他可能的自由度而导致的相互作用术语,每个$ n^{th} $优化图。为了找到多个节点系统的状态空间,真实价值和数量有价值的对象,引入了一般过程。这些值的集合是$ n^{th} $的经典快照,形成了其运动学。我们表明,可以通过定义$ n^{th} $ - 状态空间之间的组合映射来解释系统的动态。最后,通过提供对多节点理论的一般表述的解释,我们讨论并解释了如何使用宇宙背景辐射的数据和宇宙射线的数据,以找到汉密尔顿的一般结构和非结构性的详细模型。在这里,在$ n^{th} $和$({n+1)}}^{th} $ - graph之间比较过程中,时间的变化不超过真实价值的变化。
We consider the created entities (events) in the first moments of universe creation. It is assumed that there exists a causal energetic relationship between all events (nodes) such that all nodes are placed on a world line and each node occupies a region (instead of a point) in space-time, called locale, in mathematical terms. The set of locale nodes form a topos many-node system. Using some basic assumptions, we introduce two kinds of Hamiltonians. By attributing a general structural Hamiltonian to the system, it is shown that the system has an optimized critical dimension with a probable Raman and infrared spectrums. Also, we consider a general nonstructural Hamiltonian which includes a set of commutative self-adjoint operators and an interaction terms due to the spin, charge, or other kinds of probable degrees of freedoms for each $n^{th}$-optimized graph. For finding the state-space, truth values and quantity valued objects of the many-node system, a general procedure is introduced. The set of these values is a classical snapshot of the $n^{th}$-optimized graph which forms its kinematic. We show that the dynamic of the system can be explained by defining a combined map between the $n^{th}$- state-space belongs to the $n^{th}$-graph and the $({n+1)}^{th}$-state-space belong to $({n+1)}^{th}$-graph. Finally, by providing an interpretation of the general formulation of many-node theory, we discuss and explain how one can use the data of the cosmic background radiations and cosmic rays for finding a detailed model of both general structural and nonstructural introduced Hamiltonian. Here, time is no more than the change in truth value during comparison between $n^{th}$ and $({n+1)}^{th}$-graph.