论文标题
基本的子模型,编码策略和无限的实际数字游戏
Elementary submodels, coding strategies, and an infinite real number game
论文作者
论文摘要
马修·贝克(Matthew Baker)在先前的工作中调查了一款优雅的无限长度游戏,可用于研究实数的子集。我们介绍了两个可访问的例子,说明了如何使用集合理论的重要技术或无限游戏理论的不同技术来回答贝克关于该游戏是否为实数的可计数子集提供精确表征的问题,并且我们将此游戏与拓扑的精心研究的Banach-Mazur游戏联系起来。
Matthew Baker investigated, in previous work, an elegant, infinite-length game that may be used to study subsets of real numbers. We present two accessible examples of how an important technique from set theory, or a different technique from infinite game theory, may be used to answer Baker's question on whether this game provides a precise characterization for countable subsets of real numbers, and we connect this game to the well-studied Banach-Mazur game from topology.