论文标题
通过在基于PT的磁性多层中调整界面自旋轨道耦合来提高自旋轨道扭矩效率
Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
论文作者
论文摘要
我们研究了通过自旋 - 扭转铁磁性共振插入CO层厚度依赖性的自旋转运和旋转轨道扭矩(SOT)。界面垂直磁各向异性能量密度($ k_s = 2.7〜ERG/cm^2 $),该界面是由PT/CO界面中的界面旋转轨道耦合(ISOC)主导的,总有效旋转电导率($ G_ {$ G_ {EFF,TOF,form,首先要表征m^{ - 2} $)和两毫克散射($β_{tms} = 0.46〜nm^2 $),并且类似阻尼的扭矩($ξ_{dl} $ = 0.103)和野外扭矩($ 0. {fl} $ = -0.017)efficiies是efficiies是插入CO层。 $ξ_{dl} $和$ξ_{fl} $在pt/co/py中的显着增强比pt/py双层系统的显着增强起源于界面rashba-edelstein效应,这是由于CO-3D和PT/CO界面处的CO-3D和PT-5D Orbitals之间的强大ISOC效应。此外,我们发现了一个相当大的平面自旋极化SOT,该SOT归因于自旋异常的霍尔效应,并且由于PT/CO界面处的IPMA诱导的垂直磁化而引起的旋转进液效应。我们的结果表明,PT/CO界面的ISOC在自旋传输和SOT产生中起着至关重要的作用。我们的发现提供了一种替代方法来提高常规SOT的效率并产生非常规的SOT,并具有平面外旋转极化,从而通过调整PT/FM接口来开发基于低功率PT的Spintronic。
We study inserting Co layer thickness-dependent spin transport and spin-orbit torques (SOTs) in the Pt/Co/Py trilayers by spin-torque ferromagnetic resonance. The interfacial perpendicular magnetic anisotropy energy density ($K_s = 2.7~erg/cm^2$), which is dominated by interfacial spin-orbit coupling (ISOC) in the Pt/Co interface, total effective spin-mixing conductance ($G_{eff,tot} = 0.42 {\times} 10^{15}~Ω^{-1} m^{-2}$) and two-magnon scattering ($β_{TMS} = 0.46~nm^2$) are first characterized, and the damping-like torque ($ξ_{DL}$ = 0.103) and field-like torque ($ξ_{FL}$ = -0.017) efficiencies are also calculated quantitatively by varying the thickness of the inserting Co layer. The significant enhancement of $ξ_{DL}$ and $ξ_{FL}$ in Pt/Co/Py than Pt/Py bilayer system originates from the interfacial Rashba-Edelstein effect due to the strong ISOC between Co-3d and Pt-5d orbitals at the Pt/Co interface. Additionally, we find a considerable out-of-plane spin polarization SOT, which is ascribed to the spin anomalous Hall effect and possible spin precession effect due to IPMA-induced perpendicular magnetization at the Pt/Co interface. Our results demonstrate that the ISOC of the Pt/Co interface plays a vital role in spin transport and SOTs-generation. Our finds offer an alternative approach to improve the conventional SOTs efficiencies and generate unconventional SOTs with out-of-plane spin polarization to develop low power Pt-based spintronic via tailoring the Pt/FM interface.