论文标题
空间镶板:地理空间数据湖的列文件格式[扩展版本]
Spatial Parquet: A Column File Format for Geospatial Data Lakes [Extended Version]
论文作者
论文摘要
现代数据分析应用程序更喜欢使用列存储格式,因为它们通过编码和压缩提高了存储效率。 Parquet是列数据存储最受欢迎的文件格式,可以从开箱即用。但是,地理空间数据不容易得到镶木材料的支持。本文介绍了空间镶木,这是一种有效支持地理空间数据的镶木式扩展。空间镶木属于非空间数据的所有优点,例如丰富的数据类型,压缩和列/行滤波。此外,它添加了三个新功能以适应地理空间数据。首先,它引入了一种地理空间数据类型,该数据类型可以用与Parquet兼容的列格式以列格式编码所有标准的空间数据类型。其次,它添加了一种称为FP-DELTA的新的无损和高效编码方法,该方法被定制为有效地存储以浮点格式存储的地理空间坐标。第三,它添加了一个轻量级的空间索引,使读者可以跳过文件的非相关部分,以提高阅读效率。大规模真实数据的实验表明,即使没有压缩,空间parquet也可以将数据大小减少三倍。压缩可以进一步降低存储尺寸。此外,当应用轻重量指数时,空间镶木可以将阅读时间减少两个数量级。最初的原型可以打开新的研究方向,以进一步以列格式改善地理空间数据存储。
Modern data analytics applications prefer to use column-storage formats due to their improved storage efficiency through encoding and compression. Parquet is the most popular file format for column data storage that provides several of these benefits out of the box. However, geospatial data is not readily supported by Parquet. This paper introduces Spatial Parquet, a Parquet extension that efficiently supports geospatial data. Spatial Parquet inherits all the advantages of Parquet for non-spatial data, such as rich data types, compression, and column/row filtering. Additionally, it adds three new features to accommodate geospatial data. First, it introduces a geospatial data type that can encode all standard spatial data types in a column format compatible with Parquet. Second, it adds a new lossless and efficient encoding method, termed FP-delta, that is customized to efficiently store geospatial coordinates stored in floating-point format. Third, it adds a light-weight spatial index that allows the reader to skip non-relevant parts of the file for increased read efficiency. Experiments on large-scale real data showed that SpatialParquet can reduce the data size by a factor of three, even without compression. Compression can further reduce the storage size. Additionally, Spatial Parquet can reduce the reading time by two orders of magnitude when the light-weight index is applied. This initial prototype can open new research directions to further improve geospatial data storage in column format.