论文标题

重新访问55个cancri e的标志性spitzer相曲线:较热的日子,凉爽的夜间和较小的相位偏移量

Revisiting the Iconic Spitzer Phase Curve of 55 Cancri e: Hotter Dayside, Cooler Nightside and Smaller Phase Offset

论文作者

Mercier, Samson J., Dang, Lisa, Gass, Alexander, Cowan, Nicolas B., Bell, Taylor J.

论文摘要

短期系外行星的热相曲线对大气动力学和大气中的热传输提供了最佳的约束。已发表的Spitzer空间望远镜相位曲线为55 Cancri e,这是一个超短期的超级地点,表现出较大的相位偏移,表明在这样的热行星ARXIV上出现了显着的东热再循环:1604.05725。我们使用开源源和模块化Spitzer相位曲线分析(SPCA)管道对这些标志性观察的重新降低和分析。特别是,我们试图使用与原始作者相同的仪器逐渐分解方案来重现已发表的分析。 We retrieve the dayside temperature ($T_{\rm day} = 3771^{+669}_{-520}$ K), nightside temperature ($T_{\rm night} < 1649$ K at $2σ$), and longitudinal offset of the planet's hot spot and quantify how they depend on the reduction and detrending.我们的重新分析表明,55 Cancri E具有可忽略的热点偏移$ -12^{+21} _ { - 18} $ DEGREES EAST。小相位偏置和凉爽的夜边与超短期时期行星预期的热运输不良一致。高时期4.5微米亮度温度在质量上与倒岩蒸气气氛中的SIO发射一致。

Thermal phase curves of short period exoplanets provide the best constraints on the atmospheric dynamics and heat transport in their atmospheres. The published Spitzer Space Telescope phase curve of 55 Cancri e, an ultra-short period super-Earth, exhibits a large phase offset suggesting significant eastward heat recirculation, unexpected on such a hot planet arXiv:1604.05725. We present our re-reduction and analysis of these iconic observations using the open source and modular Spitzer Phase Curve Analysis (SPCA) pipeline. In particular, we attempt to reproduce the published analysis using the same instrument detrending scheme as the original authors. We retrieve the dayside temperature ($T_{\rm day} = 3771^{+669}_{-520}$ K), nightside temperature ($T_{\rm night} < 1649$ K at $2σ$), and longitudinal offset of the planet's hot spot and quantify how they depend on the reduction and detrending. Our re-analysis suggests that 55 Cancri e has a negligible hot spot offset of $-12^{+21}_{-18}$ degrees east. The small phase offset and cool nightside are consistent with the poor heat transport expected on ultra-short period planets. The high dayside 4.5-micrometer brightness temperature is qualitatively consistent with SiO emission from an inverted rock vapour atmosphere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源