论文标题
带有神经形态谐振网络的视觉探射仪
Visual Odometry with Neuromorphic Resonator Networks
论文作者
论文摘要
视觉进程(VO)是一种使用视觉传感器估算移动机器人的自我运动的方法。与基于积分差异测量值的二次计量学不同,诸如惯性传感器或车轮编码器之类的差异测量值不同,视觉探测器不会因漂移而损害。但是,基于图像的VO在计算上是要求的,它限制了其在具有低延迟, - 内存和 - 能量要求的用例中的应用。神经形态硬件为许多视力和AI问题提供了低功率解决方案,但是设计这种解决方案很复杂,通常必须从头开始组装。在这里,我们建议将矢量符号体系结构(VSA)用作抽象层,以设计与神经形态硬件兼容的算法。在我们的伴侣论文中描述的VSA模型中,我们提出了一种模块化神经形态算法,该算法在二维VO任务上实现了最先进的性能。具体而言,所提出的算法存储并更新了所提供的视觉环境的工作记忆。基于此工作内存,谐振器网络估计了相机的位置和方向的变化。我们通过实验性地验证了具有两个基准测试的神经形态VSA方法:一个基于事件摄像机数据集,另一个基于机器人任务的动态场景。
Visual Odometry (VO) is a method to estimate self-motion of a mobile robot using visual sensors. Unlike odometry based on integrating differential measurements that can accumulate errors, such as inertial sensors or wheel encoders, visual odometry is not compromised by drift. However, image-based VO is computationally demanding, limiting its application in use cases with low-latency, -memory, and -energy requirements. Neuromorphic hardware offers low-power solutions to many vision and AI problems, but designing such solutions is complicated and often has to be assembled from scratch. Here we propose to use Vector Symbolic Architecture (VSA) as an abstraction layer to design algorithms compatible with neuromorphic hardware. Building from a VSA model for scene analysis, described in our companion paper, we present a modular neuromorphic algorithm that achieves state-of-the-art performance on two-dimensional VO tasks. Specifically, the proposed algorithm stores and updates a working memory of the presented visual environment. Based on this working memory, a resonator network estimates the changing location and orientation of the camera. We experimentally validate the neuromorphic VSA-based approach to VO with two benchmarks: one based on an event camera dataset and the other in a dynamic scene with a robotic task.