论文标题
关于高旋转理论的全态部门
On holomorphic sector of higher-spin theory
论文作者
论文摘要
最近对高旋转场的局部问题的研究导致了一个顶点重建程序,该程序涉及原始Vasiliev相互作用代数的收缩元素。受这些结果的启发,我们提出了基于观察到的合同代数的四个维度,在四个维度上塑性高旋转相互作用的类似vasiliev的生成方程。我们指定了在提出的方程式上接受进化的功能类别,并采用了提取全阶全态顶点的系统过程。所提出的方程式的一个简单结果是量规场扇区的时空位置。我们还表明,顶点具有非凡的转换对称性。
Recent investigation of locality problem for higher-spin fields led to a vertex reconstruction procedure that involved elements of contraction of the original Vasiliev interaction algebra. Inspired by these results we propose the Vasiliev-like generating equations for holomorphic higher-spin interactions in four dimensions based on the observed contracted algebra. We specify the functional class that admits evolution on the proposed equations and brings in a systematic procedure of extracting all-order holomorphic vertices. A simple consequence of the proposed equations is space-time locality of the gauge field sector. We also show that vertices come with a remarkable shift symmetry.