论文标题
球形诱导的合奏用符号对称性
Spherical Induced Ensembles with Symplectic Symmetry
论文作者
论文摘要
我们考虑具有符号对称性的诱导球形吉尼伯集合的复杂特征值,并沿着真实轴建立了这些点过程的局部普遍性。我们在强和弱的非单身方案以及具有频谱奇点的原点上都在常规点的所有相关函数中得出缩放限制。我们证明的关键要素是通过相关PFAFFIAN POINT过程的相关内核满足的微分方程的推导,从而使我们能够进行渐近分析。
We consider the complex eigenvalues of the induced spherical Ginibre ensemble with symplectic symmetry and establish the local universality of these point processes along the real axis. We derive scaling limits of all correlation functions at regular points both in the strong and weak non-unitary regimes as well as at the origin having spectral singularity. A key ingredient of our proof is a derivation of a differential equation satisfied by the correlation kernels of the associated Pfaffian point processes, thereby allowing us to perform asymptotic analysis.