论文标题
二次重力中球形对称黑洞的不稳定性
Instability of spherically-symmetric black holes in Quadratic Gravity
论文作者
论文摘要
我们研究了二次重力中球形对称黑洞的两个已知分支的线性稳定性。我们将Schwarzschild分支的长波长(Gregory-laflamme)不稳定性扩展到非Schwarzschild分支中相应的长波不稳定性。在这两种情况下,不稳定性都设置在两个黑洞分支相交的临界视野半径以下。这表明经典的扰动在二次重力中的球形对称黑洞的地平线上强制执行下限。
We investigate the linear stability of the two known branches of spherically-symmetric black holes in Quadratic Gravity. We extend previous work on the long-wavelength (Gregory-Laflamme) instability of the Schwarzschild branch to a corresponding long-wavelength instability in the non-Schwarzschild branch. In both cases, the instability sets in below a critical horizon radius at which the two black-hole branches intersect. This suggests that classical perturbations enforce a lower bound on the horizon radius of spherically-symmetric black holes in Quadratic Gravity.