论文标题

手性较高的自旋重力和凸几何形状

Chiral Higher Spin Gravity and Convex Geometry

论文作者

Sharapov, Alexey, Skvortsov, Evgeny, Van Dongen, Richard

论文摘要

手性较高的自旋重力是重力的最小延伸,并具有传播的无质量自旋场。它承认宇宙常数的任何值,包括零。它的存在意味着Chern-Simons矢量模型已关闭子行业,并支持$ 3D $ hobosonization双重性。在这封信中,我们明确构建了一个$ a_ \ infty $ -Algebra,该代数决定该理论的所有相互作用顶点。原代数属于前卡比YAU类型。相应的产品,其中一些源自shoikhet-tsygan-kontsevich形式,由凸多边形的配置空间上的积分给出。

Chiral Higher Spin Gravity is the minimal extension of the graviton with propagating massless higher spin fields. It admits any value of the cosmological constant, including zero. Its existence implies that Chern-Simons vector models have closed subsectors and supports the $3d$ bosonization duality. In this letter, we explicitly construct an $A_\infty$-algebra that determines all interaction vertices of the theory. The algebra turns out to be of pre-Calabi-Yau type. The corresponding products, some of which originate from Shoikhet-Tsygan-Kontsevich formality, are given by integrals over the configuration space of convex polygons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源