论文标题
在特征2中对Khovanov的弧代数的特殊分裂2
An Exceptional Splitting of Khovanov's Arc Algebras in Characteristic 2
论文作者
论文摘要
我们表明,有一个关联代数$ \ widetilde {h} _n $,因此,在特征2的基本环$ r $上,khovanov的arc algebra $ h_n $对代数$ \ widetilde {h} _n} _n [x] _n [x]/(x^2)$ syomorphic s angebra $ \ widetilde $ \ widetilde {我们还显示了与平面缠结相关的双模型的类似结果,并证明在$ \ Mathbb {z} $上没有这种同构。
We show that there is an associative algebra $\widetilde{H}_n$ such that, over a base ring $R$ of characteristic 2, Khovanov's arc algebra $H_n$ is isomorphic to the algebra $\widetilde{H}_n[x]/(x^2)$. We also show a similar result for bimodules associated to planar tangles and prove that there is no such isomorphism over $\mathbb{Z}$.