论文标题
学习使用近红外眼周虹膜图像预测值班的健身
Learning to Predict Fitness for Duty using Near Infrared Periocular Iris Images
论文作者
论文摘要
这项研究提出了一种新的数据库和方法,以检测由于饮酒,吸毒和嗜睡而导致的警报条件的减少,而近亲(NIR)眼球周围眼部图像。该研究的重点是确定外部因素对中枢神经系统(CNS)的影响。目的是分析这如何影响虹膜和学生运动行为,以及是否可以用标准的IRIS NIR捕获装置对这些更改进行分类。本文提出了修改的Mobilenetv2,以对饮酒/药物/嗜睡影响受试者拍摄的虹膜NIR图像进行分类。结果表明,基于MobileNETV2的分类器可以在耐心等待的虹膜和药物消耗后捕获的虹膜样品的不合适性条件,分别检测准确性分别为91.3%和99.1%。嗜睡状况最具挑战性,为72.4%。对于属于FIT/UNFIT类的两类分组图像,该模型的精度分别获得了94.0%和84.0%的准确性,而不是标准深度学习网络算法的少量参数。这项工作是开发自动系统以对“适合值班”进行分类并防止因酒精/吸毒和嗜睡而导致事故的生物识别应用迈出的一步。
This research proposes a new database and method to detect the reduction of alertness conditions due to alcohol, drug consumption and sleepiness deprivation from Near-Infra-Red (NIR) periocular eye images. The study focuses on determining the effect of external factors on the Central Nervous System (CNS). The goal is to analyse how this impacts iris and pupil movement behaviours and if it is possible to classify these changes with a standard iris NIR capture device. This paper proposes a modified MobileNetV2 to classify iris NIR images taken from subjects under alcohol/drugs/sleepiness influences. The results show that the MobileNetV2-based classifier can detect the Unfit alertness condition from iris samples captured after alcohol and drug consumption robustly with a detection accuracy of 91.3% and 99.1%, respectively. The sleepiness condition is the most challenging with 72.4%. For two-class grouped images belonging to the Fit/Unfit classes, the model obtained an accuracy of 94.0% and 84.0%, respectively, using a smaller number of parameters than the standard Deep learning Network algorithm. This work is a step forward in biometric applications for developing an automatic system to classify "Fitness for Duty" and prevent accidents due to alcohol/drug consumption and sleepiness.