论文标题

通过无线渠道进行沟通有效的分布式学习

Communication Efficient Distributed Learning over Wireless Channels

论文作者

Achituve, Idan, Wang, Wenbo, Fetaya, Ethan, Leshem, Amir

论文摘要

垂直分布式学习利用了多个学习工人收集的本地特征,以形成更好的全球模型。但是,工人与模型聚合器之间的数据交换进行参数培训会造成沉重的沟通负担,尤其是当学习系统建立在容量受限的无线网络基于时。在本文中,我们提出了一个新型的分层分布式学习框架,每个工人分别学习了其本地观察到的数据的低维嵌入。然后,他们执行沟通有效的分布式最大 - 以有效地将综合输入传输到聚合器。对于通过共享无线通道进行的数据交换,我们提出了一个基于机会性载体传感的协议,以实现所有学习工人的输出数据的最大通知操作。我们的仿真实验表明,提出的学习框架能够使用学习工人的所有原始输出的串联来实现与学习模型几乎相同的模型准确性,同时需要独立于工人数量的通信负载。

Vertical distributed learning exploits the local features collected by multiple learning workers to form a better global model. However, the exchange of data between the workers and the model aggregator for parameter training incurs a heavy communication burden, especially when the learning system is built upon capacity-constrained wireless networks. In this paper, we propose a novel hierarchical distributed learning framework, where each worker separately learns a low-dimensional embedding of their local observed data. Then, they perform communication efficient distributed max-pooling for efficiently transmitting the synthesized input to the aggregator. For data exchange over a shared wireless channel, we propose an opportunistic carrier sensing-based protocol to implement the max-pooling operation for the output data from all the learning workers. Our simulation experiments show that the proposed learning framework is able to achieve almost the same model accuracy as the learning model using the concatenation of all the raw outputs from the learning workers, while requiring a communication load that is independent of the number of workers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源