论文标题
毕达哥拉斯式曲线曲线的空间运动计划
Spatial motion planning with Pythagorean Hodograph curves
论文作者
论文摘要
本文提出了一种基于两阶段预测的控制方案,该方案将环境的几何特性嵌入到无碰撞的毕达哥拉斯hodograph Spine中,然后在参数化的自由空间内找到最佳路径。这种方法的成分是双重的:首先,我们提出了一种新型的空间路径参数化,适用于任何任意曲线,而无需在其适应框架中以前假设。其次,我们确定了毕达哥拉斯大节扫描曲线的适当性,以对提出的空间模型所需的路径参数函数进行紧凑而连续的定义。这种双阶段配方导致运动计划方法,其中环境的几何特性是预测模型的状态。因此,提出的方法对于在密集环境中的运动计划具有吸引力。根据说明性示例评估该方法的功效。
This paper presents a two-stage prediction-based control scheme for embedding the environment's geometric properties into a collision-free Pythagorean Hodograph spline, and subsequently finding the optimal path within the parameterized free space. The ingredients of this approach are twofold: First, we present a novel spatial path parameterization applicable to any arbitrary curve without prior assumptions in its adapted frame. Second, we identify the appropriateness of Pythagorean Hodograph curves for a compact and continuous definition of the path-parametric functions required by the presented spatial model. This dual-stage formulation results in a motion planning approach, where the geometric properties of the environment arise as states of the prediction model. Thus, the presented method is attractive for motion planning in dense environments. The efficacy of the approach is evaluated according to an illustrative example.