论文标题

k* - 代数和二元性

K*-algebras and duality

论文作者

Naziev, A. Kh.

论文摘要

这项工作是我在D. A. Raikov的指导下履行的我的ph d论文(获得俄罗斯科学学位候选者的论文),并在N. Ya的监督下进行了辩护。 Vilenkin和S. V. Ptchelintsev。在论文素中,我将紧凑型空间的Gelfand二元性概括为所有分离的局部紧凑空间的类别,以及分离的局部交通局部紧凑型组的Pontryagin二重性对{\ em all}(交换性与否)的类别(合理与否)分开。获得这些结果已分为几个阶段:1)拓扑涉及代数的研究; 2)建造二元性的空间比紧凑的空间更一般; 3)研究拓扑参与代数的张量; 4)实际上为所有局部紧凑的半群和组获得二元定理。

The work is my Ph D thesis (dissertation for obtaining candidate of sciences degree in Russia) fulfilled under direction of D. A. Raikov and defended under supervision of N. Ya. Vilenkin and S. V. Ptchelintsev. In the dissertatin I gave generalizations of Gelfand duality for compact spaces to the category of all separated locally compact spaces, and of Pontryagin duality for separated commutative locally compact groups to the category of {\em all} (commutative or not) separated locally compact groups. Obtaining of these results has been divided into several stages: 1) the study of topological involutive algebras; 2) the construction of dualities for spaces more general than compact ones; 3) the study of tensor products of topological involutive algebras; 4) actually obtaining duality theorems for all separated locally compact semigroups and groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源