论文标题
一项关于在不平衡大型数据集上使用机器学习技术钻探过程中丢失循环事件分类的案例研究
A Case Study on the Classification of Lost Circulation Events During Drilling using Machine Learning Techniques on an Imbalanced Large Dataset
论文作者
论文摘要
这项研究提出了机器学习模型,这些模型使用大型钻探数据集预测和分类循环严重程度丢失。我们展示了利用易于解释的机器学习方法来应对大型钻井工程挑战的可再现核心技术。 我们利用了65,000多个记录数据,其中来自伊朗Azadegan油田的阶级不平衡问题。数据集的十七个参数中有11个参数用于五个丢失的循环事件的分类。为了生成分类模型,我们使用了六种基本的机器学习算法和四种集合学习方法。线性判别分析(LDA),逻辑回归(LR),支持向量机(SVM),分类和回归树(CART),K-NEAR-NEAR最邻居(KNN)和Gaussian Naive Bayes(GNB)是六个基本技术。我们还在调查解决方案中使用了装袋和增强集合学习技术,以改善预测性能。这些算法的性能是使用四个指标测量的:精度,精度,召回和F1得分。选择表示数据不平衡的F1得分作为首选评估标准。 发现CART模型是识别钻孔流体循环损失事件的最佳选择,平均加权F1分数为0.9904,标准偏差为0.0015。在应用合奏学习技术后,决策树的随机森林集合表现出最佳的预测性能。它以1.0的完美加权F1得分确定并分类丢失的循环事件。使用置换特征的重要性(PFI),发现测得的深度是准确识别钻孔时丢失循环事件的最具影响力因素。
This study presents machine learning models that forecast and categorize lost circulation severity preemptively using a large class imbalanced drilling dataset. We demonstrate reproducible core techniques involved in tackling a large drilling engineering challenge utilizing easily interpretable machine learning approaches. We utilized a 65,000+ records data with class imbalance problem from Azadegan oilfield formations in Iran. Eleven of the dataset's seventeen parameters are chosen to be used in the classification of five lost circulation events. To generate classification models, we used six basic machine learning algorithms and four ensemble learning methods. Linear Discriminant Analysis (LDA), Logistic Regression (LR), Support Vector Machines (SVM), Classification and Regression Trees (CART), k-Nearest Neighbors (KNN), and Gaussian Naive Bayes (GNB) are the six fundamental techniques. We also used bagging and boosting ensemble learning techniques in the investigation of solutions for improved predicting performance. The performance of these algorithms is measured using four metrics: accuracy, precision, recall, and F1-score. The F1-score weighted to represent the data imbalance is chosen as the preferred evaluation criterion. The CART model was found to be the best in class for identifying drilling fluid circulation loss events with an average weighted F1-score of 0.9904 and standard deviation of 0.0015. Upon application of ensemble learning techniques, a Random Forest ensemble of decision trees showed the best predictive performance. It identified and classified lost circulation events with a perfect weighted F1-score of 1.0. Using Permutation Feature Importance (PFI), the measured depth was found to be the most influential factor in accurately recognizing lost circulation events while drilling.