论文标题
脑膜瘤等级和大脑入侵的联合预测通过任务吸引对比度学习
Joint Prediction of Meningioma Grade and Brain Invasion via Task-Aware Contrastive Learning
论文作者
论文摘要
脑膜瘤等级的术前和非侵入性预测在临床实践中很重要,因为它直接影响临床决策。更重要的是,脑膜瘤中的大脑侵袭(即相邻脑组织内肿瘤组织的存在)是脑膜瘤分级的独立标准,并影响了治疗策略。尽管据报道已经努力解决这两个任务,但其中大多数依赖于手工制作的功能,并且没有尝试同时利用这两个预测任务。在本文中,我们提出了一种新型的任务意识对比学习算法,以共同预测来自多模式MRIS的脑膜瘤等级和脑部侵袭。基于基本的多任务学习框架,我们的关键思想是采用对比度学习策略,以将图像功能分解为特定于任务的功能和任务遵守功能,并明确利用其固有的连接以改善两个预测任务的功能表示。在这项回顾性研究中,收集了一个MRI数据集,通过病理分析,有800名患者(含有148个高级,62名侵袭)患有脑膜瘤。实验结果表明,所提出的算法的表现优于替代性多任务学习方法,其AUCS分别为0:8870和0:9787,分别用于预测脑膜瘤等级和脑部侵袭。该代码可在https://github.com/isdling/predicttcl上找到。
Preoperative and noninvasive prediction of the meningioma grade is important in clinical practice, as it directly influences the clinical decision making. What's more, brain invasion in meningioma (i.e., the presence of tumor tissue within the adjacent brain tissue) is an independent criterion for the grading of meningioma and influences the treatment strategy. Although efforts have been reported to address these two tasks, most of them rely on hand-crafted features and there is no attempt to exploit the two prediction tasks simultaneously. In this paper, we propose a novel task-aware contrastive learning algorithm to jointly predict meningioma grade and brain invasion from multi-modal MRIs. Based on the basic multi-task learning framework, our key idea is to adopt contrastive learning strategy to disentangle the image features into task-specific features and task-common features, and explicitly leverage their inherent connections to improve feature representation for the two prediction tasks. In this retrospective study, an MRI dataset was collected, for which 800 patients (containing 148 high-grade, 62 invasion) were diagnosed with meningioma by pathological analysis. Experimental results show that the proposed algorithm outperforms alternative multi-task learning methods, achieving AUCs of 0:8870 and 0:9787 for the prediction of meningioma grade and brain invasion, respectively. The code is available at https://github.com/IsDling/predictTCL.