论文标题
学习可解释时间序列建模的差异操作员
Learning Differential Operators for Interpretable Time Series Modeling
论文作者
论文摘要
来自数据的顺序模式是各个时间序列预测任务的核心。深度学习模型大大优于许多传统模型,但是这些黑框模型通常缺乏预测和决策的解释性。为了揭示具有可理解的数学表达式的潜在趋势,科学家和经济学家倾向于使用部分微分方程(PDE)来解释顺序模式的高度非线性动力学。但是,它通常需要领域的专家知识和一系列简化的假设,这些假设并不总是实用的,并且可能偏离不断变化的世界。是否可以动态地学习与数据的差异关系以解释时间不断发展的动态?在这项工作中,我们提出了一个学习框架,该框架可以自动从顺序数据中获取可解释的PDE模型。特别是,该框架由可学习的差分块组成,称为$ p $ blocks,这被证明能够近似于理论上随着时间不断变化的复杂连续功能。此外,为了捕获动力学变化,该框架引入了元学习控制器,以动态优化混合PDE模型的超参数。 《时代》系列预测金融,工程和健康数据的广泛实验表明,我们的模型可以提供有价值的解释性并实现与最先进模型相当的性能。从经验研究中,我们发现学习一些差分运算符可能会捕获顺序动力学的主要趋势,而无需大规模的计算复杂性。
Modeling sequential patterns from data is at the core of various time series forecasting tasks. Deep learning models have greatly outperformed many traditional models, but these black-box models generally lack explainability in prediction and decision making. To reveal the underlying trend with understandable mathematical expressions, scientists and economists tend to use partial differential equations (PDEs) to explain the highly nonlinear dynamics of sequential patterns. However, it usually requires domain expert knowledge and a series of simplified assumptions, which is not always practical and can deviate from the ever-changing world. Is it possible to learn the differential relations from data dynamically to explain the time-evolving dynamics? In this work, we propose an learning framework that can automatically obtain interpretable PDE models from sequential data. Particularly, this framework is comprised of learnable differential blocks, named $P$-blocks, which is proved to be able to approximate any time-evolving complex continuous functions in theory. Moreover, to capture the dynamics shift, this framework introduces a meta-learning controller to dynamically optimize the hyper-parameters of a hybrid PDE model. Extensive experiments on times series forecasting of financial, engineering, and health data show that our model can provide valuable interpretability and achieve comparable performance to state-of-the-art models. From empirical studies, we find that learning a few differential operators may capture the major trend of sequential dynamics without massive computational complexity.