论文标题
软件定义网络中的无模型深度强化学习
Model-Free Deep Reinforcement Learning in Software-Defined Networks
论文作者
论文摘要
本文比较了软件定义网络中网络安全的两种深入强化学习方法。对深Q网络的神经情节控制已实施,并将其与双重深Q网络进行了比较。这两种算法以类似于零和游戏的格式实现。对两个游戏结果进行了两尾t检验分析,其中包含为防守者赢得的冠军的数量。另一个比较是在各自游戏中代理商的游戏得分上进行的。进行分析是为了确定哪种算法是游戏表演者最好的,以及它们之间是否存在显着差异,证明一个算法是否会更偏爱另一个。发现两种方法之间没有显着统计差异。
This paper compares two deep reinforcement learning approaches for cyber security in software defined networking. Neural Episodic Control to Deep Q-Network has been implemented and compared with that of Double Deep Q-Networks. The two algorithms are implemented in a format similar to that of a zero-sum game. A two-tailed T-test analysis is done on the two game results containing the amount of turns taken for the defender to win. Another comparison is done on the game scores of the agents in the respective games. The analysis is done to determine which algorithm is the best in game performer and whether there is a significant difference between them, demonstrating if one would have greater preference over the other. It was found that there is no significant statistical difference between the two approaches.