论文标题

依赖年龄的差异隐私

Age-Dependent Differential Privacy

论文作者

Zhang, Meng, Wei, Ermin, Berry, Randall, Huang, Jianwei

论文摘要

实时应用程序的扩散激发了在\ textit {信息时代}的情况下分析和优化数据新鲜度的广泛研究。但是,经典的隐私框架(例如,差异隐私(DP))忽略了数据新鲜度对隐私保证的影响,这在试图在时间变化的数据库中实现有意义的隐私保证时可能会导致不必要的准确性损失。在这项工作中,我们介绍了\ textIt {与年龄有关的DP},并考虑了随时间变化的数据库的基本随机性质。在这个新框架中,我们建立了经典DP与年龄依赖性DP之间的联系,基于我们表征数据陈旧性和时间相关性对隐私保证的影响。我们的表征表明,\ textit {aging},即使用过时的数据输入和/或推迟输出的发布,除了传统的DP框架中的噪声注入之外,还可以是保护数据隐私的新策略。此外,为了将我们的结果概括为多Query方案,我们在任何出版和衰老策略下为年龄依赖性DP提供了顺序组成结果。然后,我们表征隐私风险与公用事业之间的最佳权衡,并展示如何实现这一目标。最后,案例研究表明,要在单质案例中实现任意较小的隐私风险的目标,梳理衰老和噪声注入只会导致精度损失,而仅使用噪声注入(如DP的基准案例中,将导致无限的精度损失。

The proliferation of real-time applications has motivated extensive research on analyzing and optimizing data freshness in the context of \textit{age of information}. However, classical frameworks of privacy (e.g., differential privacy (DP)) have overlooked the impact of data freshness on privacy guarantees, which may lead to unnecessary accuracy loss when trying to achieve meaningful privacy guarantees in time-varying databases. In this work, we introduce \textit{age-dependent DP}, taking into account the underlying stochastic nature of a time-varying database. In this new framework, we establish a connection between classical DP and age-dependent DP, based on which we characterize the impact of data staleness and temporal correlation on privacy guarantees. Our characterization demonstrates that \textit{aging}, i.e., using stale data inputs and/or postponing the release of outputs, can be a new strategy to protect data privacy in addition to noise injection in the traditional DP framework. Furthermore, to generalize our results to a multi-query scenario, we present a sequential composition result for age-dependent DP under any publishing and aging policies. We then characterize the optimal tradeoffs between privacy risk and utility and show how this can be achieved. Finally, case studies show that to achieve a target of an arbitrarily small privacy risk in a single-query case, combing aging and noise injection only leads to a bounded accuracy loss, whereas using noise injection only (as in the benchmark case of DP) will lead to an unbounded accuracy loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源