论文标题

光子石墨烯中的山谷大厅边缘孤子

Valley Hall edge solitons in a photonic graphene

论文作者

Tang, Qian, Ren, Boquan, Kompanets, Victor O., Kartashov, Yaroslav V., Li, Yongdong, Zhang, Yiqi

论文摘要

我们预测了山谷大厅边缘孤子子在复合光石墨烯中的存在和研究特性,在两个蜂窝状晶格之间具有域壁,倒置对称性损坏。由于引入蜂窝结构的组成sblattices,我们系统中的反转对称性被打破。我们表明,非线性山谷霍尔的边缘的状态具有足够高的幅度分叉,该幅度由域墙支撑的线性谷霍尔边缘状态,由于模能不稳定的发展,可以分成一组明亮的斑点,并且这种不稳定性是由于非线性自动化和较大型号而造成的拓扑瓦利大厅边缘局部局部的前体,是局部局部局部的局部性。通过建模其通过$ω$形状的域墙的锋利的角落来证明对山谷大厅边缘孤子的拓扑保护。

We predict the existence and study properties of the valley Hall edge solitons in a composite photonic graphene with a domain wall between two honeycomb lattices with broken inversion symmetry. Inversion symmetry in our system is broken due to detuning introduced into constituent sublattices of the honeycomb structure. We show that nonlinear valley Hall edge states with sufficiently high amplitude bifurcating from the linear valley Hall edge state supported by the domain wall, can split into sets of bright spots due to development of the modulational instability, and that such an instability is a precursor for the formation of topological bright valley Hall edge solitons localized due to nonlinear self-action and travelling along the domain wall over large distances. Topological protection of the valley Hall edge solitons is demonstrated by modeling their passage through sharp corners of the $Ω$-shaped domain wall.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源